Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Curr Opin Pharmacol ; 76: 102458, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38636195

RESUMO

ß-blockers are a solid pillar in the treatment of cardiovascular diseases. However, they are highly discussed regarding effectiveness for certain indications and side-effects. Even though there are up to 20 licensed compounds, only four are used for heart failure (HF) therapy. On the receptor level several key characteristics seem to influence the clinical outcome: subtype selectivity, antagonistic vs (inverse/biased) agonistic properties and -in particular- ancillary capacities. On a molecular level, divergent and novel signaling patterns are being identified and extra-cardiac effects on e.g. inflammation, metabolism and oxidative stress are highlighted. This review discusses different well-known and newly discovered characteristics that need to be considered for HF therapy and in the context of co-morbidities.

2.
Front Endocrinol (Lausanne) ; 15: 1339741, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455657

RESUMO

Introduction: Thyroid hormones (THs) are known to have various effects on the cardiovascular system. However, the impact of TH levels on preexisting cardiac diseases is still unclear. Pressure overload due to arterial hypertension or aortic stenosis and aging are major risk factors for the development of structural and functional abnormalities and subsequent heart failure. Here, we assessed the sensitivity to altered TH levels in aged mice with maladaptive cardiac hypertrophy and cardiac dysfunction induced by transverse aortic constriction (TAC). Methods: Mice at the age of 12 months underwent TAC and received T4 or anti-thyroid medication in drinking water over the course of 4 weeks after induction of left ventricular pressure overload. Results: T4 excess or deprivation in older mice had no or only very little impact on cardiac function (fractional shortening), cardiac remodeling (cardiac wall thickness, heart weight, cardiomyocyte size, apoptosis, and interstitial fibrosis), and mortality. This is surprising because T4 excess or deprivation had significantly changed the outcome after TAC in young 8-week-old mice. Comparing the gene expression of deiodinases (Dio) 2 and 3 and TH receptor alpha (TRα) 1 and the dominant-negative acting isoform TRα2 between young and aged mice revealed that aged mice exhibited a higher expression of TRα2 and Dio3, while expression of Dio2 was reduced compared with young mice. These changes in Dio2 and 3 expressions might lead to reduced TH availability in the hearts of 12-month-old mice accompanied by reduced TRα action due to higher TRα2. Discussion: In summary, our study shows that low and high TH availability have little impact on cardiac function and remodeling in older mice with preexisting pressure-induced cardiac damage. This observation seems to be the result of an altered expression of deiodinases and TRα isoforms, thus suggesting that even though cardiovascular risk is increasing with age, the response to TH stress may be dampened in certain conditions.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Insuficiência Cardíaca/etiologia , Miócitos Cardíacos/metabolismo , Hormônios Tireóideos/metabolismo , Hipertensão/complicações
4.
Chemistry ; 30(11): e202303506, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38212242

RESUMO

ß2 -adrenergic receptor (ß2 -AR) agonists are used for the treatment of asthma and chronic obstructive pulmonary disease, but also play a role in other complex disorders including cancer, diabetes and heart diseases. As the cellular and molecular mechanisms in various cells and tissues of the ß2 -AR remain vastly elusive, we developed tools for this investigation with high temporal and spatial resolution. Several photoswitchable ß2 -AR agonists with nanomolar activity were synthesized. The most potent agonist for ß2 -AR with reasonable switching is a one-digit nanomolar active, trans-on arylazopyrazole-based adrenaline derivative and comprises valuable photopharmacological properties for further biological studies with high structural accordance to the native ligand adrenaline.


Assuntos
Adrenérgicos , Agonistas de Receptores Adrenérgicos beta 2 , Agonistas de Receptores Adrenérgicos beta 2/farmacologia , Sondas Moleculares , Receptores Adrenérgicos beta 2/química , Epinefrina/farmacologia , Transdução de Sinais
5.
Trends Biotechnol ; 42(2): 212-227, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37806897

RESUMO

Cardiac multiscale bioimaging is an emerging field that aims to provide a comprehensive understanding of the heart and its functions at various levels, from the molecular to the entire organ. It combines both physiologically and clinically relevant dimensions: from nano- and micrometer resolution imaging based on vibrational spectroscopy and high-resolution microscopy to assess molecular processes in cardiac cells and myocardial tissue, to mesoscale structural investigations to improve the understanding of cardiac (patho)physiology. Tailored super-resolution deep microscopy with advanced proteomic methods and hands-on experience are thus strategically combined to improve the quality of cardiovascular research and support future medical decision-making by gaining additional biomolecular information for translational and diagnostic applications.


Assuntos
Coração , Proteômica , Coração/diagnóstico por imagem
6.
Mol Metab ; 79: 101859, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38142971

RESUMO

BACKGROUND: Dilated cardiomyopathy with ataxia (DCMA) is an autosomal recessive disorder arising from truncating mutations in DNAJC19, which encodes an inner mitochondrial membrane protein. Clinical features include an early onset, often life-threatening, cardiomyopathy associated with other metabolic features. Here, we aim to understand the metabolic and pathophysiological mechanisms of mutant DNAJC19 for the development of cardiomyopathy. METHODS: We generated induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) of two affected siblings with DCMA and a gene-edited truncation variant (tv) of DNAJC19 which all lack the conserved DnaJ interaction domain. The mutant iPSC-CMs and their respective control cells were subjected to various analyses, including assessments of morphology, metabolic function, and physiological consequences such as Ca2+ kinetics, contractility, and arrhythmic potential. Validation of respiration analysis was done in a gene-edited HeLa cell line (DNAJC19tvHeLa). RESULTS: Structural analyses revealed mitochondrial fragmentation and abnormal cristae formation associated with an overall reduced mitochondrial protein expression in mutant iPSC-CMs. Morphological alterations were associated with higher oxygen consumption rates (OCRs) in all three mutant iPSC-CMs, indicating higher electron transport chain activity to meet cellular ATP demands. Additionally, increased extracellular acidification rates suggested an increase in overall metabolic flux, while radioactive tracer uptake studies revealed decreased fatty acid uptake and utilization of glucose. Mutant iPSC-CMs also showed increased reactive oxygen species (ROS) and an elevated mitochondrial membrane potential. Increased mitochondrial respiration with pyruvate and malate as substrates was observed in mutant DNAJC19tv HeLa cells in addition to an upregulation of respiratory chain complexes, while cellular ATP-levels remain the same. Moreover, mitochondrial alterations were associated with increased beating frequencies, elevated diastolic Ca2+ concentrations, reduced sarcomere shortening and an increased beat-to-beat rate variability in mutant cell lines in response to ß-adrenergic stimulation. CONCLUSIONS: Loss of the DnaJ domain disturbs cardiac mitochondrial structure with abnormal cristae formation and leads to mitochondrial dysfunction, suggesting that DNAJC19 plays an essential role in mitochondrial morphogenesis and biogenesis. Moreover, increased mitochondrial respiration, altered substrate utilization, increased ROS production and abnormal Ca2+ kinetics provide insights into the pathogenesis of DCMA-related cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada , Ataxia Cerebelar , Células-Tronco Pluripotentes Induzidas , Maleatos , Erros Inatos do Metabolismo , Humanos , Trifosfato de Adenosina/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Células HeLa , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação/genética , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Respiração
7.
Physiol Rep ; 11(17): e15809, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37688424

RESUMO

OBJECTIVES: Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS: At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 µg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS: Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS: Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.


Assuntos
Mesalamina , Infarto do Miocárdio , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Coração , Miocárdio
8.
Cells ; 12(13)2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37443814

RESUMO

Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.


Assuntos
Células Endoteliais , Insuficiência Cardíaca , Humanos , Células Endoteliais/metabolismo , Cardiomegalia/patologia , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/metabolismo , Fibrose
9.
Angew Chem Int Ed Engl ; 62(49): e202306176, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37269130

RESUMO

The cannabinoid 2 receptor (CB2 R) has high therapeutic potential for multiple pathogenic processes, such as neuroinflammation. Pathway-selective ligands are needed to overcome the lack of clinical success and to elucidate correlations between pathways and their respective therapeutic effects. Herein, we report the design and synthesis of a photoswitchable scaffold based on the privileged structure of benzimidazole and its application as a functionally selective CB2 R "efficacy-switch". Benzimidazole azo-arenes offer huge potential for the broad extension of photopharmacology to a wide range of optically addressable biological targets. We used this scaffold to develop compound 10 d, a "trans-on" agonist, which serves as a molecular probe to study the ß-arrestin2 (ßarr2) pathway at CB2 R. ßΑrr2 bias was observed in CB2 R internalization and ßarr2 recruitment, while no activation occurred when looking at Gα16 or mini-Gαi . Overall, compound 10 d is the first light-dependent functionally selective agonist to investigate the complex mechanisms of CB2 R-ßarr2 dependent endocytosis.


Assuntos
Agonistas de Receptores de Canabinoides , Canabinoides , beta-Arrestina 2/metabolismo , Canabinoides/farmacologia , Benzimidazóis/química
10.
Nat Commun ; 14(1): 3312, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286550

RESUMO

Mutations in thyroid hormone receptor α1 (TRα1) cause Resistance to Thyroid Hormone α (RTHα), a disorder characterized by hypothyroidism in TRα1-expressing tissues including the heart. Surprisingly, we report that treatment of RTHα patients with thyroxine to overcome tissue hormone resistance does not elevate their heart rate. Cardiac telemetry in male, TRα1 mutant, mice indicates that such persistent bradycardia is caused by an intrinsic cardiac defect and not due to altered autonomic control. Transcriptomic analyses show preserved, thyroid hormone (T3)-dependent upregulation of pacemaker channels (Hcn2, Hcn4), but irreversibly reduced expression of several ion channel genes controlling heart rate. Exposure of TRα1 mutant male mice to higher maternal T3 concentrations in utero, restores altered expression and DNA methylation of ion channels, including Ryr2. Our findings indicate that target genes other than Hcn2 and Hcn4 mediate T3-induced tachycardia and suggest that treatment of RTHα patients with thyroxine in high dosage without concomitant tachycardia, is possible.


Assuntos
Síndrome da Resistência aos Hormônios Tireóideos , Tiroxina , Masculino , Animais , Camundongos , Tiroxina/uso terapêutico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Síndrome da Resistência aos Hormônios Tireóideos/genética , Hormônios Tireóideos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Mutação , Taquicardia/genética
11.
Biomedicines ; 11(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831095

RESUMO

Adiponectin and the other 15 members of the complement 1q (C1q)/tumor necrosis factor (TNF)-related protein (CTRP) family are secreted proteins composed of an N-terminal variable domain followed by a stalk region and a characteristic C-terminal trimerizing globular C1q (gC1q) domain originally identified in the subunits of the complement protein C1q. We performed a basic PubMed literature search for articles mentioning the various CTRPs or their receptors in the abstract or title. In this narrative review, we briefly summarize the biology of CTRPs and focus then on the structure, receptors and major signaling pathways of CTRPs. Analyses of CTRP knockout mice and CTRP transgenic mice gave overwhelming evidence for the relevance of the anti-inflammatory and insulin-sensitizing effects of CTRPs in autoimmune diseases, obesity, atherosclerosis and cardiac dysfunction. CTRPs form homo- and heterotypic trimers and oligomers which can have different activities. The receptors of some CTRPs are unknown and some receptors are redundantly targeted by several CTRPs. The way in which CTRPs activate their receptors to trigger downstream signaling pathways is largely unknown. CTRPs and their receptors are considered as promising therapeutic targets but their translational usage is still hampered by the limited knowledge of CTRP redundancy and CTRP signal transduction.

12.
Curr Opin Chem Biol ; 73: 102253, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36689818

RESUMO

Platelets are small anucleate cell fragments (2-4 µm in diameter) in the blood, which play an essential role in thrombosis and hemostasis. Genetic or acquired platelet dysfunctions are linked to bleeding, increased risk of thromboembolic events and cardiovascular diseases. Advanced proteomic approaches may pave the way to a better understanding of the roles of platelets in hemostasis, and pathophysiological processes such as inflammation, metastatic spread and thrombosis. Further insights into the molecular biology of platelets are crucial to aid drug development and identify diagnostic markers of platelet activation. Platelet activation is known to be an extremely rapid process and involves multiple post-translational mechanisms at sub second time scale, including proteolysis and phosphorylation. Multi-omics technologies and biochemical approaches can be exploited to precisely probe and define these posttranslational pathways. Notably, the absence of a nucleus in platelets significantly reduces the number of present proteins, simplifying mass spectrometry-based proteomics and metabolomics approaches.


Assuntos
Plaquetas , Trombose , Humanos , Plaquetas/metabolismo , Plaquetas/patologia , Proteômica , Multiômica , Ativação Plaquetária , Trombose/metabolismo , Trombose/patologia
13.
Circ Res ; 132(4): 400-414, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36715019

RESUMO

BACKGROUND: Ventricular arrhythmia and sudden cardiac death are the most common lethal complications after myocardial infarction. Antiarrhythmic pharmacotherapy remains a clinical challenge and novel concepts are highly desired. Here, we focus on the cardioprotective CNP (C-type natriuretic peptide) as a novel antiarrhythmic principle. We hypothesize that antiarrhythmic effects of CNP are mediated by PDE2 (phosphodiesterase 2), which has the unique property to be stimulated by cGMP to primarily hydrolyze cAMP. Thus, CNP might promote beneficial effects of PDE2-mediated negative crosstalk between cAMP and cGMP signaling pathways. METHODS: To determine antiarrhythmic effects of cGMP-mediated PDE2 stimulation by CNP, we analyzed arrhythmic events and intracellular trigger mechanisms in mice in vivo, at organ level and in isolated cardiomyocytes as well as in human-induced pluripotent stem cell-derived cardiomyocytes. RESULTS: In ex vivo perfused mouse hearts, CNP abrogated arrhythmia after ischemia/reperfusion injury. Upon high-dose catecholamine injections in mice, PDE2 inhibition prevented the antiarrhythmic effect of CNP. In mouse ventricular cardiomyocytes, CNP blunted the catecholamine-mediated increase in arrhythmogenic events as well as in ICaL, INaL, and Ca2+ spark frequency. Mechanistically, this was driven by reduced cellular cAMP levels and decreased phosphorylation of Ca2+ handling proteins. Key experiments were confirmed in human iPSC-derived cardiomyocytes. Accordingly, the protective CNP effects were reversed by either specific pharmacological PDE2 inhibition or cardiomyocyte-specific PDE2 deletion. CONCLUSIONS: CNP shows strong PDE2-dependent antiarrhythmic effects. Consequently, the CNP-PDE2 axis represents a novel and attractive target for future antiarrhythmic strategies.


Assuntos
Miócitos Cardíacos , Diester Fosfórico Hidrolases , Camundongos , Animais , Humanos , Diester Fosfórico Hidrolases/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Catecolaminas/metabolismo , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/prevenção & controle , Antiarrítmicos/farmacologia , Antiarrítmicos/uso terapêutico , Antiarrítmicos/metabolismo , GMP Cíclico/metabolismo , Peptídeo Natriurético Tipo C/farmacologia
14.
Nat Commun ; 13(1): 7648, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36496449

RESUMO

After myocardial infarction the innate immune response is pivotal in clearing of tissue debris as well as scar formation, but exaggerated cytokine and chemokine secretion with subsequent leukocyte infiltration also leads to further tissue damage. Here, we address the value of targeting a previously unknown a disintegrin and metalloprotease 10 (ADAM10)/CX3CL1 axis in the regulation of neutrophil recruitment early after MI. We show that myocardial ADAM10 is distinctly upregulated in myocardial biopsies from patients with ischemia-driven cardiomyopathy. Intriguingly, upon MI in mice, pharmacological ADAM10 inhibition as well as genetic cardiomycyte-specific ADAM10 deletion improves survival with markedly enhanced heart function and reduced scar size. Mechanistically, abolished ADAM10-mediated CX3CL1 ectodomain shedding leads to diminished IL-1ß-dependent inflammation, reduced neutrophil bone marrow egress as well as myocardial tissue infiltration. Thus, our data shows a conceptual insight into how acute MI induces chemotactic signaling via ectodomain shedding in cardiomyocytes.


Assuntos
Proteína ADAM10 , Infarto do Miocárdio , Animais , Camundongos , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/genética , Leucócitos , Proteínas de Membrana/genética , Infarto do Miocárdio/genética , Humanos
15.
ACS Chem Neurosci ; 13(16): 2410-2435, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35881914

RESUMO

Activation of the human cannabinoid receptor type 1 (hCB1R) with high spatiotemporal control is useful to study processes involved in different pathologies related to nociception, metabolic alterations, and neurological disorders. To synthesize new agonist ligands for hCB1R, we have designed different classes of photoswitchable molecules based on an indole core. The modifications made to the central core have allowed us to understand the molecular characteristics necessary to design an agonist with optimal pharmacological properties. Compound 27a shows high affinity for CB1R (Ki (cis-form) = 0.18 µM), with a marked difference in affinity with respect to its inactive "trans-off" form (CB1R Ki trans/cis ratio = 5.4). The novel compounds were evaluated by radioligand binding studies, receptor internalization, sensor receptor activation (GRABeCB2.0), Western blots for analysis of ERK1/2 activation, NanoBiT ßarr2 recruitment, and calcium mobilization assays, respectively. The data show that the novel agonist 27a is a candidate for studying the optical modulation of cannabinoid receptors (CBRs), serving as a new molecular tool for investigating the involvement of hCB1R in disorders associated with the endocannabinoid system.


Assuntos
Amidas , Hexaclorobenzeno , Endocanabinoides , Humanos , Indóis/química , Receptor CB1 de Canabinoide , Receptores de Canabinoides
16.
Proc Natl Acad Sci U S A ; 119(25): e2121867119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35696587

RESUMO

Raf Kinase Inhibitory Protein (RKIP) maintains cellular robustness and prevents the progression of diseases such as cancer and heart disease by regulating key kinase cascades including MAP kinase and protein kinase A (PKA). Phosphorylation of RKIP at S153 by Protein Kinase C (PKC) triggers a switch from inhibition of Raf to inhibition of the G protein coupled receptor kinase 2 (GRK2), enhancing signaling by the ß-adrenergic receptor (ß-AR) that activates PKA. Here we report that PKA-phosphorylated RKIP promotes ß-AR-activated PKA signaling. Using biochemical, genetic, and biophysical approaches, we show that PKA phosphorylates RKIP at S51, increasing S153 phosphorylation by PKC and thereby triggering feedback activation of PKA. The S51V mutation blocks the ability of RKIP to activate PKA in prostate cancer cells and to induce contraction in primary cardiac myocytes in response to the ß-AR activator isoproterenol, illustrating the functional importance of this positive feedback circuit. As previously shown for other kinases, phosphorylation of RKIP at S51 by PKA is enhanced upon RKIP destabilization by the P74L mutation. These results suggest that PKA phosphorylation at S51 may lead to allosteric changes associated with a higher-energy RKIP state that potentiates phosphorylation of RKIP at other key sites. This allosteric regulatory mechanism may have therapeutic potential for regulating PKA signaling in disease states.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Proteína de Ligação a Fosfatidiletanolamina , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Retroalimentação Fisiológica , Humanos , Masculino , Células PC-3 , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fosforilação , Neoplasias da Próstata/metabolismo , Proteína Quinase C/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628155

RESUMO

Vibrational spectroscopy can detect characteristic biomolecular signatures and thus has the potential to support diagnostics. Fabry disease (FD) is a lipid disorder disease that leads to accumulations of globotriaosylceramide in different organs, including the heart, which is particularly critical for the patient's prognosis. Effective treatment options are available if initiated at early disease stages, but many patients are late- or under-diagnosed. Since Coherent anti-Stokes Raman (CARS) imaging has a high sensitivity for lipid/protein shifts, we applied CARS as a diagnostic tool to assess cardiac FD manifestation in an FD mouse model. CARS measurements combined with multivariate data analysis, including image preprocessing followed by image clustering and data-driven modeling, allowed for differentiation between FD and control groups. Indeed, CARS identified shifts of lipid/protein content between the two groups in cardiac tissue visually and by subsequent automated bioinformatic discrimination with a mean sensitivity of 90-96%. Of note, this genotype differentiation was successful at a very early time point during disease development when only kidneys are visibly affected by globotriaosylceramide depositions. Altogether, the sensitivity of CARS combined with multivariate analysis allows reliable diagnostic support of early FD organ manifestation and may thus improve diagnosis, prognosis, and possibly therapeutic monitoring of FD.


Assuntos
Doença de Fabry , Animais , Diagnóstico Precoce , Doença de Fabry/diagnóstico por imagem , Humanos , Lipídeos , Camundongos , Microscopia/métodos , Análise Espectral Raman/métodos
18.
Arch Toxicol ; 96(8): 2341-2360, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35579693

RESUMO

Remdesivir is a prodrug of a nucleoside analog and the first antiviral therapeutic approved for coronavirus disease. Recent cardiac safety concerns and reports on remdesivir-related acute kidney injury call for a better characterization of remdesivir toxicity and understanding of the underlying mechanisms. Here, we performed an in vitro toxicity assessment of remdesivir around clinically relevant concentrations (Cmax 9 µM) using H9c2 rat cardiomyoblasts, neonatal mouse cardiomyocytes (NMCM), rat NRK-52E and human RPTEC/TERT1 cells as cell models for the assessment of cardiotoxicity or nephrotoxicity, respectively. Due to the known potential of nucleoside analogs for the induction of mitochondrial toxicity, we assessed mitochondrial function in response to remdesivir treatment, early proteomic changes in NMCM and RPTEC/TERT1 cells and the contractile function of NMCM. Short-term treatments (24 h) of H9c2 and NRK-52E cells with remdesivir adversely affected cell viability by inhibition of proliferation as determined by significantly decreased 3H-thymidine uptake. Mitochondrial toxicity of remdesivir (1.6-3.1 µM) in cardiac cells was evident by a significant decrease in oxygen consumption, a collapse of mitochondrial membrane potential and an increase in lactate secretion after a 24-48-h treatment. This was supported by early proteomic changes of respiratory chain proteins and intermediate filaments that are typically involved in mitochondrial reorganization. Functionally, an impedance-based analysis showed that remdesivir (6.25 µM) affected the beat rate and contractility of NMCM. In conclusion, we identified adverse effects of remdesivir in cardiac and kidney cells at clinically relevant concentrations, suggesting a careful evaluation of therapeutic use in patients at risk for cardiovascular or kidney disease.


Assuntos
Antivirais , Proteômica , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Animais , Antivirais/toxicidade , Proliferação de Células , Humanos , Rim , Camundongos , Ratos
19.
Cancers (Basel) ; 14(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35205615

RESUMO

Cancer and heart disease are leading causes of morbidity and mortality worldwide. These diseases have common risk factors, common molecular signaling pathways that are central to their pathogenesis, and even some disease phenotypes that are interdependent. Thus, a detailed understanding of common regulators is critical for the development of new and synergistic therapeutic strategies. The Raf kinase inhibitory protein (RKIP) is a regulator of the cellular kinome that functions to maintain cellular robustness and prevent the progression of diseases including heart disease and cancer. Two of the key signaling pathways controlled by RKIP are the ß-adrenergic receptor (ßAR) signaling to protein kinase A (PKA), particularly in the heart, and the MAP kinase cascade Raf/MEK/ERK1/2 that regulates multiple diseases. The goal of this review is to discuss how we can leverage RKIP to suppress cancer without incurring deleterious effects on the heart. Specifically, we discuss: (1) How RKIP functions to either suppress or activate ßAR (PKA) and ERK1/2 signaling; (2) How we can prevent cancer-promoting kinase signaling while at the same time avoiding cardiotoxicity.

20.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35054890

RESUMO

Ischemic disorders are the leading cause of death worldwide. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) are thought to affect the outcome of ischemic stroke. However, it is under debate whether activation or inhibition of ERK1/2 is beneficial. In this study, we report that the ubiquitous overexpression of wild-type ERK2 in mice (ERK2wt) is detrimental after transient occlusion of the middle cerebral artery (tMCAO), as it led to a massive increase in infarct volume and neurological deficits by increasing blood-brain barrier (BBB) leakiness, inflammation, and the number of apoptotic neurons. To compare ERK1/2 activation and inhibition side-by-side, we also used mice with ubiquitous overexpression of the Raf-kinase inhibitor protein (RKIPwt) and its phosphorylation-deficient mutant RKIPS153A, known inhibitors of the ERK1/2 signaling cascade. RKIPwt and RKIPS153A attenuated ischemia-induced damages, in particular via anti-inflammatory signaling. Taken together, our data suggest that stimulation of the Raf/MEK/ERK1/2-cascade is severely detrimental and its inhibition is rather protective. Thus, a tight control of the ERK1/2 signaling is essential for the outcome in response to ischemic stroke.


Assuntos
Apoptose , AVC Isquêmico/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Animais , Barreira Hematoencefálica , Modelos Animais de Doenças , Regulação da Expressão Gênica , Inflamação , AVC Isquêmico/genética , AVC Isquêmico/fisiopatologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/fisiologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/fisiologia , Neurônios/fisiologia , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...